Jump to content

Log in or register to remove this advert

Kveldssanger

Veteran Member
  • Posts

    2,078
  • Joined

  • Last visited

Everything posted by Kveldssanger

  1. Pure vandalism, frankly. Great deadwood habitat, but as has been said where is the next generation of farmland trees (oh wait, there isn't one), and how on earth are farmers seen as protecting the countryside when, by and large, they obliterate it.
  2. 28/04/16. Fact #195. This is from one of my assignments, so it's not extensive, but instead a sort of overview. If bits sound good, go and explore them. For damages to be granted as a result of light occlusion to a property, it must first be established that there is indeed a right to light. Unless there is an explicit grant detailing a right to light, which is rare, right can come only in the form of prescription. Detailed in the Prescription Act 1832, a right to light may be acquired when a land owner has enjoyed uninterrupted light availability into his or her property for a period of at least 20 years. However, as the Act relates only to a specified opening (such as a window), the right to light can only be ascertained if it relates to a building; as confirmed in Harris v De Pinna [1886] and Levet v Gas Light & Coke [1919]. However, a building can also relate to a greenhouse, as stated in Allen v Greenwood [1980]. For example, if a new building is constructed that then limits the amount of light coming in through a window, and the level of light inside falls below the ‘accepted’ level, then this constitutes an obstruction. However, the accepted level of light ultimately relates to the intended use of the affected building, in turn making the accepted level of light non-constant. The more recent court case of Regan v Paul Properties Ltd [2006] even ruled that: “What matters is not so much the amount of light that is taken as the amount of light that is left as a result of the infringement. The consequence of the obstruction to the light in the middle of the living room was that Mr Regan would suffer a substantial interference with the enjoyment of natural light in his living room.” Whilst this related to the construction of a nearby building, such a ruling could potentially cross over to a ruling regarding light obscuration by trees. As of yet however, this has not happened, and it is therefore difficult to ascertain where the law stands beyond that of there not being an ‘active’ precedent. This is because trees only gradually increase in height, unlike buildings which are erected rather more swiftly. The only existing law surrounding a right to light with regards to vegetation is the concept of a High Hedge, which is featured in Section 8 of The Anti-social Behaviour Act 2003. This involves at least a semi-evergreen hedge line of two or more specimens occluding light into a property (in England), thereby detracting from the enjoyment of the affected property. The threshold for whether a hedge is too high is determined by a series of mathematical equations. In Scotland, which has its own Act – The High Hedges (Scotland) Act 2013 – a high hedge may not be only from evergreen and semi-evergreen individuals, but deciduous broadleaved ones, too.
  3. Good shots - can even make out my horrendous choice of attire for the day! Add Betula to the list - he was there. Also Sal. Next one is in October. Expect to see more Arbtalkers there.
  4. Part of the Forever 21 club, I think! We probably roamed into Denmark at some point during the excursion. The three students, since collecting data, are at work plotting, by hand, on scrolls of papyrus, the resistance graphs obtained.
  5. Had some new recruits fresh out of college come down today to test out some pieces of kit on fine examples of England's urban tree stock. After requesting to spend the morning eating expensive sweets and discussing what season of Strictly Come Dancing they found most controversial, they finally got down to some work vandalising trees.
  6. That is one beastly baobab. The closest I have ever been to one is when I made an elephant enclosure in Zoo Tycoon...
  7. Score! Slowly building up a photo-base of fungi pictures, so can make a folder for this one as well. I'll pay a visit to the tree in a few months, though I doubt it'll yield anything. Not enough alder around these parts to really provide for the fungus to a great enough extent to struggle to miss it. Must have to go along some river banks where mature alder reside, or carrs, as you say. I was on holiday in Wenhaston last week and there were so many mature alders on the land over the river from where I was staying, but I couldn't get across. Gutted.
  8. Evening, Saw this yesterday evening, on a substantially-dead alder (A. glutinosa). Around pruning wounds and other wounds were these brackets, which could potentially be very old Inonotus radiatus brackets. Slime mold at the bottom, too. Link:
  9. 26/04/16. Fact #194. In light (or the lack of, as may become evident!) of reading the first five chapters of Vera’s work in Grazing Ecology and Forest History (not yet done with the book), the recognising of oaks not regenerating under a closed canopy, because of a lack of light (and now you get the joke), is something I’d explore further. An article I found wasn’t quite aligned with this above statement directly, but sounded interesting and thus I’ll share it below. But first, a little wider context. Often, mature oaks found in regenerating woodlands (because of the abandonment of grazing activities) will have an open-grown crown structure, with a wide-spreading crown from a low stem break, either through pollarding, or natural crown formation. Such oaks are usually very old, and of impressive size. These large trees, by virtue of their size and age, will also be host to saproxylic organisms (insects, fungi, and so on), and such a habitat may very well have also been present prior to the woodland regenerating around the old oaks. Before regeneration, these oaks may have been wholly exposed, or existed in a small scrub area, from which grazing livestock were barred from entering (to protect the tree, in order to safeguard the mast each year). Therefore, one can explore how the change in surrounds to the host trees impacts upon these saproxylic organisms, and what this may mean for future woodland management practices if conservation is a key consideration. Generally, saproxylic organisms prefer lighter conditions. This is, of course, not true across the board, though particularly for insects, the more open conditions provide for better habitat quality. With regards to the diversity of the landscape, saproxylic organisms may also vary as diversity changes, and therefore the authors of the study being looked at in this post assess: (1) the species composition of saproxylic organisms in old oaks in regenerating thermophilic (temperate) oak woodlands in Krivoklatsko, Prague; (2) species richness in these oaks, and; (3) whether these organisms are affected by tree site conditions (solitary tree, woodland edge, open forest, dense forest). The study looked specifically at saproxylic fungi, lichens, beetles, ants, bees, and wasps, within the Krivoklatsko area. From the surveying of fungi and lichens and trapping of arthropods, a total of 78 species of fungi, 36 species of lichen, 153 species of beetle, and 32 species of ant, bee, and wasp, were found. Generally-speaking, open habitats supported a wider and more homogenous fungal species range than closed-canopy locations, where populations were less diverse and less homogenous (as in, the species found were not very similar across all locations). However, fungi did seem to opt more readily for denser stands and woodland edges, in place of generally more open habitats, and in woodland edges species richness was greatest. This is probably because of the moister wood and cooler temperatures, which likely suit fungi more, though woodland edges may also be host to the greatest amount of deadwood as a result of windthrown trees being more plentiful. For lichens, diversity increased alongside the level of openness. Beetles perhaps took this to the greatest extreme, showing preference for open-grown trees. The greatest richness was also found in these solitary trees, followed by woodland edges – open and closed stands were generally poor, for beetle species. The ants, bees, and wasps were shown to prefer transitonal areas where the woodland edge met scrub (an ecotone, or the mantle and fringe), and this may be due to the higher abundance of potential nectar sources associated with shrubby species and herbaceous vegetation not found in the forest. Open forest stands were also supportive of these species, to a similar degree, and probably for the same reasons. The richness of species was also positively correlated with increasing levels of openness (up to a point – not solitary trees), by-and-large. The graphs below help illustrate the above. The size of the circles relates to the species richness at the studied locations, and the graphs in the upper right corner refer to the weighted species mean in each of the four area categories. Fungi (a), lichen (b), beetles ©, and ants, bees, and wasps (d). In response to the above data, what can certainly be suggested is whether a non-intervenionist approach to stand management is good, with regards to preserving saproxylic organisms; of which many are endangered. Ultimately, the goals of the site will dictate management practices, though the idea of leaving stands to become high and possess a dense canopy is not necessarily going to be optimal for lichens, beetles, and ants, bees, and wasps that rely upon deadwood principally (or near exclusively). In this sense, re-introducing management practices, namely coppicing around older trees, or other good saproxylic habitats, may be of marked benefit. Such practices also ensure that actual stand diversity does not shift in favour of, in time, near exclusively (or wholly) shade-tolerant species, such as beech (Fagus sylvatica), Norway spruce (Picea abies), and European silver fir (Abies alba), and also provides scope for re-intoducing lost practices (perhaps even extensive grazing) and revive potentially dwindling economies. If a stand is large enough, this management doesn’t even need to necessarily be widespread. A good mosaic of different habitats, ranging from open ones to higher canopies, may support the greatest number of species (assuming the patches are large enough, and abundant enough), and as mentioned, also support traditional rural practices that have unfortunately been so very lost in many parts of Europe. At the same time, attention should be given to paving the way for future old oaks, in thermophilic oak woodlands, and as oak cannot regenerate under a closed canopy, the only way to provide for future generations is to re-open the canopy in large enough areas to permit oak regeneration. Given that our large wild herbivores are largely gone, we must assume the role of those herbivores, be it through the introduction of ungulates, or woodland management practices. This begs the question – why is a non-interventionist approach to woodland management so popular? Source: Horak, J., Vodka, S., Kout, J., Halda, J., Bogusch, P., & Pech, P. (2014) Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. Forest Ecology and Management. 315 (1). p80-85.
  10. Some impressive shots there. A saprophyte, more routinely, or can it be mildly parasitic? The wood there looks markedly decayed (if we assume the five stages of decay, it must be at least stage 3).
  11. Nice! Looks a bit like Daedaleopsis confragosa, in terms of its 'blushed' upper surface. Is the polypore one you come across every so often, on willow? I ask, as I'd have put that down as blushing bracket by sheer virtue of the blushed upper surface in part.
  12. Evening Jules, Thanks for the comments. Your in-depth analysis of stuff is, as always, appreciated. What I shared was what I wrote for my Lvl 4, so I tried to keep it as to-the-point as I could, without it getting War and Peace-y. Case law is something I must immerse myself in more, and having a take on it from someone who is far more experienced with it is great.
  13. Very nice! Dinky little things. Nice morphology, too - looks spined? An addition from me, too (from today). I think this is Ganoderma resinaceum on Salix sp. I couldn't get access through the wire fence into the tip site (could only get my hand through the chains and zoom in), though from what I could see it looks like a load of lacquered brackets. Evidently a white rot, as seen by the willow stem's exposed wood.
  14. Will be slowing down on facts until I finish reading Vera's Grazing Ecology book. Absolutely glued to it. Also on holiday again at the end of this week and over the weekend, so probably only one or two this week. Gives you all a further chance to catch up.
  15. When severing roots, they are not severed in a manner that would render the tree's structure unsafe, from a hazard management perspective, or tree health perspective. Such as in the picture, which I attached to the post.
  16. Bit of an odd one. Wanders across different styles, I'd say. [ame] [/ame]
  17. I’m currently engrossed in Vera’s book Grazing Ecology and Forest History, which I cannot rate high enough for its readability, lucidity, and coherency. Whilst on my holiday last week, I read through the third chapter on the study of palynology and how this relates to interpreting how treed landscapes may once have looked, and I have to be honest when I say that the entire field was somewhat (though not wholly) new to me, and what was suggested within the book certainly made me think. For this reason, I’m going to write a little bit about pollen studies and how it can effectively be used, or even ineffectively used, to determine what our landscapes once looked like, with regards to what trees existed, and in what abundance / distribution, according to Vera. Vera begins by ‘setting the scene’, by describing how the Swedish geologist, Von Post, in 1916, produced what is considered the first pollen diagram. Prior to the utilisation of pollen, typically accumulated in peat bogs and lakes (which are regional pollen sinks), larger parts of plants were used in an attempt to understand what the landscape once looked like (up until the last Ice Age some 12,000 years ago) – leaves, fruits, tree stumps, and possibly even larger seeds were three means of how the landscape’s vegetation history was being deciphered, and again these were usually found within peat bogs. In this sense, prior to 1916, the vegetation composition of a landscape was being understood through assessing how plant macro-fossils were distributed (vertically) in peat bogs. For example, if a stump of a pine tree was found below the leaves of a willow tree, one could suggest that pine trees existed prior to willow trees in the geographical area. After 1916, pollen, which readily remains desposited in such aforementioned naturally-occurring sinks, could instead be used. Granted, pollen generally only persists for wind-pollinated species, with the exception of poplars, so one cannot, in theory, decipher the exact presence of tree (and plant – grasses, etc) species – one can instead only interpret, based on the facts gathered. By-and-large, following Von Post’s landmark pollen diagram in 1916, studies into pollen presence had suggested that the landscape was once almost wholly covered in trees (where tree cover was possible, due to biotic and abiotic factors). This is because, when pollen studies have been undertaken, the large majority of pollen found has been from tree species (usually, non-arboreal pollen amounts for no greater than 5-20% of total pollen in the sinks). Historically, and prior to 1934, when Firbas published a paper on how one can also identify and use the pollen of grasses and shrubs to determine landscape composition, there was also a choice to ‘ignore’ the pollen of non-tree species. Because of these factors, scientific opinion was generally that grasslands and wood pastures are an advent of agriculture and man’s influence upon the landscape, in place of wild ungulates (auroch, bison, boar, deer, Przewalski’s horse, and so on) influencing upon the vegetation composition. Therefore, prior to modern man, the European and American landscape was largely void of expansive steppes and pastures, where the land was potentially habitable by trees. The wild ungulates were thus not seen as responsble for carving the landscape, and thus only existed in low numbers within treed landscapes. Instead, these wild herbivores followed the regression and regeneration of trees in the landscape. An artistic depiction of the auroch (Bos primigenius). Interestingly, the breeding of cattle in an attempt to re-create the auroch is being undertaken, by breeding characteristically-similar (to the auroch) domesticated cattle and allowing them to exist in the wild. Image source: Open Up! However, where it gets interesting is when one looks at what tree species were present in the pollen records. Before we look further at this however, we must recognise that the dense forest will generally be host only to shade tolerant tree species (beech, lime), assuming it has reached its ‘climax’ (prior to this climax, more light-demanding species will be present, initially with birch, hazel, pine, willow, and so on, and then with species such as oak). For this reason, if we assume that the historic landscapes were covered with high forest, we can assume that much of this high forest will be of climax species, as man was not historically around to carve apart such landscapes with cattle and for arable activities. Despite this, this is not what the pollen records show. In fact, hazel (Corylus avellana) and oak (Quercus robur) contribute quite significantly to pollen records, and as neither species will regenerate in high forest (because they are not shade tolerant), how is it possible that large tracts of the landscape were high forest? Unless the species were able to regenerate significantly enough in high forests to feature so readily in pollen records, which goes against the species’ understood biology and ecology, there must have existed landscapes where significant light was able to reach the floor. This is where Vera suggests that the landscape could very well have been shaped by wild grazing animals, who kept large areas adjacent to groups of trees or forests open (where there was the ‘mantle and fringe’ vegetation), and the thorny scrub that grew within such a grazed landscape enabled for hazel to grow in thickets and oak to succeed within such thickets (of hazel, and particular thorny scrub, on which ungulates would not generally graze). Oak, in particular, can in modern day be observed not to regenerate in high forest, but in grazed areas amongst thorny scrub (I myself saw this the other day at Dunwich Forest and nearby heathlands, where oak was regenerating not amongst high forest, but within the gorse and bramble scrub). A young Quercus robur growing amongst gorse and bramble, and protected from the impacts of grazing as a result. Vera also raised concerns over interpreting the high amounts of tree (arboreal) pollen in pollen records as meaning the landscape was largely comprised of trees. This is because the pollen sinks, as already stated, are generally regional (peat bogs and lakes, of which large lakes are more often used). Because tree pollen is released early in the season, and is usually released in high abundance at an elevated level in the canopy, there is a much greater chance of tree pollen travelling greater distances, where it will reach these regional pollen sinks. Conversely, grasses release pollen during the summer, and at levels just above the ground, where winds are less strong and there is a greater chance of the pollen not travelling too far (because of the lower wind speeds, and the trees and shrubs in leaf ‘trap’ the pollen in situ). As a result, a regional sink, such as a peat bog, even if large areas of land, even almost adjacent to the bog, were grassland or pasture that were bordered by trees, there is still a very high probability of non-arboreal pollen not accounting for more than 10-25% of the total pollen distribution in a sample. Not only this, but even if we assume that the landscape was wood pasture where animals grazed, the suppression of the grass by grazing herbivores and the fact that open-grown trees have much larger, fuller crowns, means that pollen ratios between arboreal and non-arboreal sources will likely register as if the area was instead a forest (for example, the total crown area of an area of wood pasture and of high forest may not be all that different). Trees in wood pasture will also have more clearance for pollen to travel great distances, and thus end up in these regional sinks at high levels. Even modern-day records suggest exactly this, and in this sense a wood pasture can be interpreted as, if assessed on pollen records alone, high, dense forest. Of course, this suggests that pollen records only tell part of the story, and it is easy to mis-interpret findings based on pollen studies. What could be considered mantle and fringe vegetation (regenerating birch amongst gorse), with Dunwich Forest’s pines in the background. Bear in mind deer (at least) are found on the site, so there is some grazing pressure. If you have found this post interesting, then please do consider buying the book. There is no way that I can give the whole picture here, and instead I have only given a fragment. Hopefully, it makes sense, and hopefully it gives an indication of why suggesting that the landscape was once comprised of massive expanses of high forest is perhaps not entirely accurate. In the modern day, there is no doubt that grazing by cattle has suppressed the regeneration of forest, and man’s conservation efforts with heathlands and grasslands has also stopped forest regeneration; as has man’s carving-up of the landscape for building and development. However, historically, when wild herbivores were still actually in existence, as man hadn’t pit-falled the last auroch to its death, the landscape may have not been covered exclusively by high forest where conditions allowed. Considering that fire is not seen as a massive driver behind the regression of forests to grassland and then back to a form of woodland at a later date, and the beaver is not considered to have been the only mammalian influence behind the loss of forest patches (again, according to Vera and the sources he immersed himself in), perhaps wild ungulates had more of a role in shaping the landscape than is generally considered. Food for thought, no doubt. Graze on that literary resource, and head out for pannage in your local library. Source: Vera, F. (2000) Grazing Ecology and Forest History. UK: CABI Publishing.
  18. 24/04/16. Fact #193. I’m currently engrossed in Vera’s book Grazing Ecology and Forest History, which I cannot rate high enough for its readability, lucidity, and coherency. Whilst on my holiday last week, I read through the third chapter on the study of palynology and how this relates to interpreting how treed landscapes may once have looked, and I have to be honest when I say that the entire field was somewhat (though not wholly) new to me, and what was suggested within the book certainly made me think. For this reason, I’m going to write a little bit about pollen studies and how it can effectively be used, or even ineffectively used, to determine what our landscapes once looked like, with regards to what trees existed, and in what abundance / distribution, according to Vera. Vera begins by ‘setting the scene’, by describing how the Swedish geologist, Von Post, in 1916, produced what is considered the first pollen diagram. Prior to the utilisation of pollen, typically accumulated in peat bogs and lakes (which are regional pollen sinks), larger parts of plants were used in an attempt to understand what the landscape once looked like (up until the last Ice Age some 12,000 years ago) – leaves, fruits, tree stumps, and possibly even larger seeds were three means of how the landscape’s vegetation history was being deciphered, and again these were usually found within peat bogs. In this sense, prior to 1916, the vegetation composition of a landscape was being understood through assessing how plant macro-fossils were distributed (vertically) in peat bogs. For example, if a stump of a pine tree was found below the leaves of a willow tree, one could suggest that pine trees existed prior to willow trees in the geographical area. After 1916, pollen, which readily remains desposited in such aforementioned naturally-occurring sinks, could instead be used. Granted, pollen generally only persists for wind-pollinated species, with the exception of poplars, so one cannot, in theory, decipher the exact presence of tree (and plant – grasses, etc) species – one can instead only interpret, based on the facts gathered. By-and-large, following Von Post’s landmark pollen diagram in 1916, studies into pollen presence had suggested that the landscape was once almost wholly covered in trees (where tree cover was possible, due to biotic and abiotic factors). This is because, when pollen studies have been undertaken, the large majority of pollen found has been from tree species (usually, non-arboreal pollen amounts for no greater than 5-20% of total pollen in the sinks). Historically, and prior to 1934, when Firbas published a paper on how one can also identify and use the pollen of grasses and shrubs to determine landscape composition, there was also a choice to ‘ignore’ the pollen of non-tree species. Because of these factors, scientific opinion was generally that grasslands and wood pastures are an advent of agriculture and man’s influence upon the landscape, in place of wild ungulates (auroch, bison, boar, deer, Przewalski’s horse, and so on) influencing upon the vegetation composition. Therefore, prior to modern man, the European and American landscape was largely void of expansive steppes and pastures, where the land was potentially habitable by trees. The wild ungulates were thus not seen as responsble for carving the landscape, and thus only existed in low numbers within treed landscapes. Instead, these wild herbivores followed the regression and regeneration of trees in the landscape. An artistic depiction of the auroch (Bos primigenius). Interestingly, the breeding of cattle in an attempt to re-create the auroch is being undertaken, by breeding characteristically-similar (to the auroch) domesticated cattle and allowing them to exist in the wild. Image source: Open Up! However, where it gets interesting is when one looks at what tree species were present in the pollen records. Before we look further at this however, we must recognise that the dense forest will generally be host only to shade tolerant tree species (beech, lime), assuming it has reached its ‘climax’ (prior to this climax, more light-demanding species will be present, initially with birch, hazel, pine, willow, and so on, and then with species such as oak). For this reason, if we assume that the historic landscapes were covered with high forest, we can assume that much of this high forest will be of climax species, as man was not historically around to carve apart such landscapes with cattle and for arable activities. Despite this, this is not what the pollen records show. In fact, hazel (Corylus avellana) and oak (Quercus robur) contribute quite significantly to pollen records, and as neither species will regenerate in high forest (because they are not shade tolerant), how is it possible that large tracts of the landscape were high forest? Unless the species were able to regenerate significantly enough in high forests to feature so readily in pollen records, which goes against the species’ understood biology and ecology, there must have existed landscapes where significant light was able to reach the floor. This is where Vera suggests that the landscape could very well have been shaped by wild grazing animals, who kept large areas adjacent to groups of trees or forests open (where there was the ‘mantle and fringe’ vegetation), and the thorny scrub that grew within such a grazed landscape enabled for hazel to grow in thickets and oak to succeed within such thickets (of hazel, and particular thorny scrub, on which ungulates would not generally graze). Oak, in particular, can in modern day be observed not to regenerate in high forest, but in grazed areas amongst thorny scrub (I myself saw this the other day at Dunwich Forest and nearby heathlands, where oak was regenerating not amongst high forest, but within the gorse and bramble scrub). A young Quercus robur growing amongst gorse and bramble, and protected from the impacts of grazing as a result. Vera also raised concerns over interpreting the high amounts of tree (arboreal) pollen in pollen records as meaning the landscape was largely comprised of trees. This is because the pollen sinks, as already stated, are generally regional (peat bogs and lakes, of which large lakes are more often used). Because tree pollen is released early in the season, and is usually released in high abundance at an elevated level in the canopy, there is a much greater chance of tree pollen travelling greater distances, where it will reach these regional pollen sinks. Conversely, grasses release pollen during the summer, and at levels just above the ground, where winds are less strong and there is a greater chance of the pollen not travelling too far (because of the lower wind speeds, and the trees and shrubs in leaf ‘trap’ the pollen in situ). As a result, a regional sink, such as a peat bog, even if large areas of land, even almost adjacent to the bog, were grassland or pasture that were bordered by trees, there is still a very high probability of non-arboreal pollen not accounting for more than 10-25% of the total pollen distribution in a sample. Not only this, but even if we assume that the landscape was wood pasture where animals grazed, the suppression of the grass by grazing herbivores and the fact that open-grown trees have much larger, fuller crowns, means that pollen ratios between arboreal and non-arboreal sources will likely register as if the area was instead a forest (for example, the total crown area of an area of wood pasture and of high forest may not be all that different). Trees in wood pasture will also have more clearance for pollen to travel great distances, and thus end up in these regional sinks at high levels. Even modern-day records suggest exactly this, and in this sense a wood pasture can be interpreted as, if assessed on pollen records alone, high, dense forest. Of course, this suggests that pollen records only tell part of the story, and it is easy to mis-interpret findings based on pollen studies. What could be considered mantle and fringe vegetation (regenerating birch amongst gorse), with Dunwich Forest’s pines in the background. Bear in mind deer (at least) are found on the site, so there is some grazing pressure. If you have found this post interesting, then please do consider buying the book. There is no way that I can give the whole picture here, and instead I have only given a fragment. Hopefully, it makes sense, and hopefully it gives an indication of why suggesting that the landscape was once comprised of massive expanses of high forest is perhaps not entirely accurate. In the modern day, there is no doubt that grazing by cattle has suppressed the regeneration of forest, and man’s conservation efforts with heathlands and grasslands has also stopped forest regeneration; as has man’s carving-up of the landscape for building and development. However, historically, when wild herbivores were still actually in existence, as man hadn’t pit-falled the last auroch to its death, the landscape may have not been covered exclusively by high forest where conditions allowed. Considering that fire is not seen as a massive driver behind the regression of forests to grassland and then back to a form of woodland at a later date, and the beaver is not considered to have been the only mammalian influence behind the loss of forest patches (again, according to Vera and the sources he immersed himself in), perhaps wild ungulates had more of a role in shaping the landscape than is generally considered. Food for thought, no doubt. Graze on that literary resource, and head out for pannage in your local library. Source: Vera, F. (2000) Grazing Ecology and Forest History. UK: CABI Publishing.
  19. I sent you an email with what I have, Gary. It's my coursework, which I have pretty much pasted here as common law is a bit of a bugger for many and finding info is hard if you don't have Mynors' book.
  20. It's very 'busy' music on the surface, though I've listened to this sort of thing for nearly a decade now so have certainly got used to it. Liking that track you shared, too. Enjoyable. Certainly more of an 'easy' listen, in a positive sense. Here's probably the best track from the LP by Ulver, from which my username here is taken from. Some stellar neofolk. [ame] [/ame]
  21. [ame] [/ame] The debut EP and first three LPs by Enslaved are incredible. Their first LP is probably their best. The riffing at 3:51 is out of this world, and the keys at 7:52 as well.
  22. Question (pushing a personal agenda here, more than anything, so you are aware) - why are we focussing on amenity primarily in our urban areas? Do we forget trees have a massive ecological role to play, over and above them looking pretty?
  23. A few links you might appreciate: https://hal.archives-ouvertes.fr/hal-01098416/document https://forestry.oxfordjournals.org/content/83/4/451.full http://www.afs-journal.org/articles/forest/pdf/2005/03/F5023.pdf
  24. Honestly, if you're doing a degree and this is an essay of yours, I'd say you'd need to at least loan out the book (2nd edition!) from a library. The LTOA has a bit of info on case law, though Mynors goes into so much depth that it really does cover most things to some degree. Granted, it's not gospel, though it's certainly highly valuable as source material.

About

Arbtalk.co.uk is a hub for the arboriculture industry in the UK.  
If you're just starting out and you need business, equipment, tech or training support you're in the right place.  If you've done it, made it, got a van load of oily t-shirts and have decided to give something back by sharing your knowledge or wisdom,  then you're welcome too.
If you would like to contribute to making this industry more effective and safe then welcome.
Just like a living tree, it'll always be a work in progress.
Please have a look around, sign up, share and contribute the best you have.

See you inside.

The Arbtalk Team

Follow us

Articles

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.